

NSK ABC of Bearings

NSK International (Singapore) Pte Ltd

Contents				
1	Development of Bearings			
2	Introduction to Rolling Bearings			
3	Types and Features of Rolling Bearings			
4	Boundary Dimensions for Rolling Bearings			
5	Tolerances, Clearances and Fits			
6	Bearing Numbers for Rolling Bearings			
7	Bearing Handling			

- **Understand the difference between plain and rolling bearings.**
- □ Introduction to the different types of rolling bearings.
- □ Learn the importance and relationship between tolerances, fits and clearances.
- □ Identify bearings based on its part numbers.
- □ Knowledge of how to handle bearings.

NSK International (Singapore) Pte Ltd

1. Development of Bearings

NSK International (Singapore) Pte Ltd

- Leonardo da Vinci discovered the principle of bearing in the 15th century.
- He realised that friction could be reduced if the balls did not touch each other. He designed separators allowing the balls to move freely.

• Without cage, balls rotating contra to each other.

Rolling Bearing Designed by Leonardo da Vinci

Sliding and Rolling

(1) Sliding (contact among solids)

(2) Sliding (use of lubricant)

Sliding Motion and Rolling Motion

NSK

(3) Rolling

(1) Sliding brg.

(2) Sliding brg. (oil lubrication)

Sliding Bearing and Rolling Bearing

(3) Rolling brg.

NSK International (Singapore) Pte Ltd

Bearings do not mean rolling bearings alone.

There are Two Kinds of Bearing :-

- Plain Bearing sliding contact between shaft and bearing
- Rolling Bearing rolling contact via balls or rollers between shaft and bearing

Plain Bearings

- **O Oil-lubricated bearing:** White metal, copper, lead alloy, etc.
- **O** Air bearing: Used in application of high running accuracy and low friction.
- **O** Magnetic bearing: Shaft is supported by using magnetic force.
- **O** Self-lubricated bearing: Plastic bearing, solid lubricant bearing, etc.

Reason why rolling bearings are widely used.

<u>Rolling Bearings</u>

- (1) Low starting torque or friction.
- (2) Worldwide standardization of dimension, accuracy and indication. Rolling bearings are internationally available and interchangeable.
- (3) Maintenance/replacement/inspection easy due to simple structure of surrounding bearings.
- (4) Capable of taking both radial and axial loads simultaneously or independently.
- (5) Used under a wide range of temperatures.
- (6) Can be preloaded to achieve greater rigidity.

Examples of Rolling Bearing

1 – Development of Bearings

Summary

Two Kinds of Bearing

✓ Plain Bearing - sliding contact between shaft and bearing

NSK

 Rolling Bearing - rolling contact via balls or rollers between shaft and bearing

2. Introduction to Rolling Bearings

Organizations that control the sizes and tolerance of standard bearings to make sure that all manufacturer's products are interchangeable.

List of Standards Organization

ISO (International Organization for Standardization) ABMA (American Bearing Manufacturers Association) DIN (Deutsch Industrie Norm) JIS (Japanese Industrial Standard)

- (1) Carry load
- (2) Reduce friction
- (3) Guide rotation motion
- (4) Locate a system

- Outer Ring
- Inner Ring
- Rolling Elements ie. Balls or Rollers
- Cage/Retainer
 - Keep rolling elements separated from each other. Normally made of steel, but sometimes brass or plastic.

Bearing Critical Dimensions

- Bore / Inside Diameter (ID)
- Outside Diameter (OD)
- Width

NSK

Bearing Loads

Radial

Load acting perpendicular to the shaft/axis ie. around the radius.

Axial or Thrust load

Load acting parallel and along the shaft/axis

Radial Bearings

Bearings that primarily carry loads perpendicular to the shaft. *Example: Deep Grove Ball Bearing*

Bearing Classifications

• Thrust Bearings

Bearings that primarily carry loads along the shaft.

Example: Thrust Ball Bearing

NSK

P: Combined load, Equivalent load, or Resultant load

The calculated load derived from the radial and axial load, $P = X F_r + Y F_a$

Refer to Page A25

Definition:

Maximum 10% failure rate for a group of identical bearings able to complete 1 million revolutions, under similar conditions.

For a single bearing, L_{10} refers to the life associated with 10% failure rate (or 90% reliability).

 $L_{10} = (C/P)^3$ for ball bearings, *or* = $(C/P)^{10/3}$ for roller bearings

> where C : Basic Load Rating (N or kgf) P : Bearing load (equivalent load) (N or kgf)

2 – Introduction to Rolling Bearings

NSK

Summary

- ✓ Purpose of Bearings
 - Carry load
 - Reduce friction
 - Guide rotation motion
 - Locate a system
- ✓ Bearing Loads
 - Radial
 - Axial
 - Combined
- ✓ Basic Rating Life, L_{10}
- ✓ Bearing Load Contact
 - Point Contact
 - Line Contact

3. Types and Features of Rolling Bearings

Types of Ball Bearings

NSK

Deep Groove Ball Bearings

- Most common type of rolling bearings. Their use are widespread.
- Accommodates radial and axial loads.
- Because of their low friction, they are highly suitable for high speed.
- Pressed steel cages are common.

Applications

- ✓ Electric Motors/Power Tools
- ✓ Gearboxes
- ✓ Pumps/Compressors
- \checkmark Office Automation

Bearing Series Symbols

- 68xx, 69xx, 60xx, 62xx, 63xx

Ball Bearing Seals

- Prevents dirt and moisture from entering the bearing, and the lubricant from leaking out.
- Steel or rubber component mounted between the outer and the inner ring in bearing.

Characteristics of Sealed-type Ball Bearings

Туре	Non-Contact Shield(ZZ)	Non-Contact Rubber Seal (VV)	Contact Rubber Seal (DDU)	Contact Rubber Seal (DDW)
Frictional Torque	Low	Low	Higher than ZZ and VV types	Higher than ZZ and VV types
High-Speed Capability	Good	Good	Limited due to contact type seal	Limited (better than DDU)
Grease Sealing Properties	Good	Better than ZZ type.	Better than DDW type	Slightly better than VV type
Dust Proofing Properties	Good	Better than ZZ type (Usable in little dusty condition)	Best (Usable in dusty environment)	Best (Usable in dusty environment)
Water Proofing Properties	No good	No good	Good (Usable in a splash condition)	Good (Not as good a DDU)
Operating Temp. Range ⁽¹⁾	-10 ~ +110 °C	-10 ~ +110 °C	-10 ~ +100 °C	-10 ~ +100 °C

Note (1): The values shown are for standard products. The temperature range can be extended depending on use of low or high-temperature greases and rubber material for seal.

Types of Ball Bearings

Single-Row Angular Contact Ball Bearings

- Accommodates radial loads, and axial loads in one direction.
- 30°, 40°, 15° and 25° contact angles available.
 larger contact angle ⇒ higher axial load capacity, lower speed.
- Frequently sold as matched sets.
- High rigidity with preload.
- Pressed steel cages are commonly used.
 - * For high precision bearings with contact angles less than 30°, polyamide resin cages are often used.

Applications

- ✓ Pumps & Compressors
- ✓ Metal Rolling Mills
- ✓ Electric Motors & Generators

> Bearing Series Symbols

- 79xx, 70xx, 72xx, 73xx

NE/

ACBB – Contact Angles and Relationship

• Matching method of angular contact ball bearings

AXIAL AXIAL	Figure	Arrangement	Features
LOAD BACK-TO-BACK ARRANGEMENT		Back-to-back (DB) (Example) 7208 A DB	Radial loads and axial loads in both directions can be sustained. Since the distance between the effective load centers a_0 is big, this type is suitable if moments are applied.
AXIAL LOAD FACE-TO-FACE ARRANGEMENT		Face-to-face (DF) (Example) 7208 B DF	Radial loads and axial loads in both directions can be sustained. Compared with the DB Type, the distance between the effective load centers is small, so the capacity to sustain moments is inferior to the DB Type.
AXIAL	ØØ	Tandem (DT) (Example) 7208 A DT	Radial loads and axial loads in one direction can be sustained. Since two bearings share the axial load, this arrangement is used when the load in one direction is heavy.

Table 2 Types and Features of Matched Angular Contact Ball Bearings

NSK International (Singapore) Pte Ltd

Double-Row Angular Contact Ball Bearings

- Equivalent to two single-row angular contact ball bearings mounted back-to-back except they have only one inner ring and one outer ring, each having two raceways.
- Can take axial loads in either direction.
- Capable of taking moment loads.

Applications

- ✓ Centrifugal Pumps
- ✓ Electric Motor
- ✓ Blowers & Fans

Bearing Series Symbols
 - 52xx, 53xx

NSK

Four-point Contact Ball Bearings

- Outer and inner rings are separable because inner ring is split in radial plane.
- Can take axial loads from either direction.
- Balls have contact angle of 35° with each ring.
- Can replace a combination of face-to-face or back-to-back angular contact bearing.
- Machined brass cages are generally used.

> Bearing Series Symbols - QJ10xx, QJ2xx, QJ3xx

Self-Aligning Ball Bearings

- Inner ring has two raceways.
- Outer ring has single spherical raceway with its center of curvature coincident with bearing axis. As such, the axis of the inner ring, balls, and cage can deflect to some extent around the bearing center.
- Able to withstand minor angular misalignment (4° to 7°).

Bearing Series Symbols
 - 12xx, 13xx, 22xx, 23xx

NSK International (Singapore) Pte Ltd

Types of Ball Bearings

NS'

Thrust Ball Bearings

- Designed for heavy axial (thrust) loads only.
- Single-direction thrust ball bearings capable of taking axial loads in one direction only.
- Double-direction thrust ball bearings, have three rings with the middle one (central washer) being fixed to the shaft.
- The ring attached to the shaft is called the shaft washer while that attached to the housing is called the housing washer.
- Pressed steel cages are usually used in smaller bearings and machined cages in larger bearings.

Applications

- ✓ Jib Cranes
- \checkmark Turntables

Bearing Series Symbols
 - 511xx, 512xx, 513xx, 514xx
 522xx, 523xx, 524xx

Single-direction

Double-direction

Types of Roller Bearings

Roller Bearings

- Generally classified by roller shape.
- Within each type, design varies with number of rolling element rows, cage type, primary load direction, etc.

Types of Roller Bearings

Cylindrical Roller Bearings

- Very high radial loads capacity.
- Suitable for high speed.
- Some have no ribs on either inner or outer ring, so the rings can move axially relative to each other. These can be used as free-end bearings.
- Outer and inner rings of all types are separable.
- There are different types designated NU, NJ, NUP, N, NF for singlerow bearings, and NNU, NN for double-row bearings.

Applications

- ✓ Large Electric Motors
- ✓ Gearboxes, Presses
- ✓ Machine Tool Spindles
- Bearing Series Symbols
 NUVY NUPY NUPY NY NEY
 - NUxx, NJxx, NUPxx, Nxx, NFxx

Refer to Page B81

Single-row Cylindrical Roller Bearings

Double-row Cylindrical Roller Bearings

Have high radial rigidity and are used primarily for precision machine tools.

Types of Roller Bearings

Needle Roller Bearings

 Rollers of length 3 to 10 times the diameter, and diameter less than 5 mm.

R	The second se
B	

- Numerous types available, and many have no inner rings.
 Drawn-cup type has a pressed steel outer ring and solid type has a machined outer ring.
- There are cage and roller assemblies without rings.
- Most have pressed steel cages, but some are without cages.
- Bearing Series Symbols
 NA 48-00 NA 50-00 NA 50-00 NA
 - NA48xx, NA49xx, NA59xx, NA69xx

Tapered Roller Bearings

- Designed for high radial loads and axial loads in one direction.
- Cone (inner ring) and cup (outer ring) are separable and can be mounted independently.
- Contact angle: Normal, Medium and Steep.
- Generally mounted in pairs.
- Double-row and four-row tapered roller bearings are also available.

Applications

✓ Plastic/Metal Forming Equipment

Bearing Series Symbols
 - 329xx, 320xx, 330xx, 331xx, 302xx
 322xx, 332xx, 303xx, 323xx

Duplex Designs

- Back-to-Back (DB) or Face-to-Face (DF)
- DB Type (With or Without Spacers)
- DF Type (With or Without Spacers)

DB Mount

NSK

DF Mount

DB + KLR Mount

DF + K Mount

> Bearing Series Symbols - 3xxxx DB or DF or DB+KLR or DF+K

Spherical Roller Bearings

- Barrel-shaped rollers between inner ring (with two raceways), and outer ring (with one spherical raceway). Since center of curvature of outer ring raceway coincides with bearing axis, they are self-aligning.
- Can take deflection of shaft or misaligned housing (up to 1.5°).
- Heavy radial load capacity, and moderate axial loads in either directions.
- Suitable for heavy or impact loads.

Applications

- ✓ Steel Mills
- ✓ Paper Mills
- ✓ Continuous Casting Machinery
- > Bearing Series Symbols
 - 230xx, 231xx, 222xx, 232xx, 213xx, 223xx

NS /

Spherical Thrust Roller Bearings

- Very high axial load capacity and moderate radial loads.
- Spherical raceway in the housing washer and barrel-shaped rollers. The bearings are self-aligning.
- Pressed steel cages or machined brass cages are usually used.

Applications

- ✓ Deep Well Pumps
- ✓ Plastic Extruders
- ✓ Large Centrifugal Pumps
- Bearing Series Symbols
 292xx, 293xx, 294xx

	Bearing Types	Deep Groove Ball Bearings	Magneto Bearings	Angular Contact Ball Bearings	Double-Row Angular Contact Ball Bearings	Duplex Angular Contact Ball Bearings	Four-Point Contact Ball Bearings	Self- Aligning Ball Bearings
Fe	atures	Ø	Ø	Ø	<u>foo</u>	ÞÞ	\$	8
sity	Radial Loads	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
ad Capac	Axial Loads	Ö	0	\odot	\odot	\odot	\odot	0
Lo	Combined Loads	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
۱	High Speeds	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
ł	High Accuracy	\bigcirc		\bigcirc		\bigcirc	\bigcirc	
ļ	ow Noise and	\bigcirc						
f	Rigidity					\bigcirc		
4	Angular Misalignment	\bigcirc	0	0	0	0	0	0
50	Self-Aligning Capability							☆
Hos	Ring Separability		☆				Ń	

- There are many types of bearings and each have their own characteristics.
- It is necessary to select correct bearing based on characteristics, availability and cost.

Refer to Page A18

Bearing Characteristics Comparison

3 - Types and Features of Rolling Bearings

Summary

✓ <u>Ball Bearings</u>

- Deep Groove
- Magneto
- Angular Contact
- Self Aligning
- Thrust Ball Bearings

NSK

3 - Types and Features of Rolling Bearings

Summary

✓ <u>Roller Bearings</u>

- Cylindrical
- Needle
- Tapered Roller
- Spherical
- Thrust Roller Bearings

NSK

4. Boundary Dimensions for Rolling Bearings

Boundary Dimensions

Refer to Page A38 ~ A39

- Dimensions that define their external geometry
 - ➢ bore diameter, d
 - ➢ outside diameter, D
 - \succ width B, or height T
- Standard bearings are interchangeable.

There are many sizes even for the spherical roller bearing having the same bore diameter as shown above.

Basic Order of Selection: $ID \rightarrow OD \rightarrow Width$

• Bore Number represents Bore Diameter ie. 23120 6001

			*1	*2
Bore Number	1 to 9	00 01 02 03	04 to 96	/500 ~
Bore Dia. (mm)	1 to 9	10 12 15 17	20 to 480	500 ~

- *1 For bore number 04 to 96 : Bore dia. = Bore number \times 5
- *2 For numbers over 500 mm, bore number = /Bore diameter
- Dimension Series indicated by Width & Diameter Series ie. 23120 6001
- Width series:

Indicated using one-digit figure specified by the width or the height.

• Diameter series:

Indicated using one-digit figure specified by the outside diameter.

• Dimension series: -

Indicated using two-digit figure with width series as the first digit and diameter series as second digit.

Refer to Page A41 ~ A42

•Basic order: Bore dia. \rightarrow Outside dia. \rightarrow Width

NSK International (Singapore) Pte Ltd

Refer to Page B10 ~ B11

SINGLE-ROW DEEP GROOVE BALL BEARINGS Dynamic Equivalent Load Bore Diameter 25~45 mm P=XF.+YF.													
ØDE Data balancia 2.5 45 min # # # # #	Pro-Contact VV VV Contact VV Contact Sealed Type N N N N	$r_{x} \stackrel{a}{=} \stackrel{b}{} \stackrel{r_{0}}{} \qquad $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
Boundary Dimensions (mm) (N) (k)	(kgf) Factor Limiting Speeds (rpm) Bearing Numbers Grease Oil	Snap Ring Groove Dimensions (') Snap Ring (') Snap Snap Snap (') Dimensions (') (mm)	Abutment and Fillet Dimensions Mass (kg)										
$ \underline{\underline{d}} \underline{\underline{D}} \underline{\underline{B}} \underline{\underline{r}} \underline{C_r} \underline{C_{0r}} \underline{C_r} $	C _{0r} f ₀ Z ZZ DU Open Open Shielded Sealed V VV DDU Z	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d_{a}^{(2)}$ $D_{a}^{(2)}$ r_{a} D_{x} C_{Y} min max max max min max approx										
37 7 0.3 4 300 3 100 470 47 8 0.3 8 85 5 600 905 47 8 0.3 8 85 6 900 900 47 8 0.3 8 85 6 000 905 47 8 0.3 8 85 6 000 900 47 8 0.3 120 0 1300 14000 7 850 14300 28 52 12 0.6 12 500 7 400 27 200 14000 2700 14000 2700 30 42 7 0.3 7250 500 170 100 300 150 55 9 0.3 11 200 7300 1800 1700 62 13 1 15 100 9 150 150 150 </td <td>3 3 20 16.1 18 000 10 000 12 000 6905 22 VV DDU 3 570 15.1 15 000 9000 15 000 6905 22 VV DDU 3 570 15.1 15 000 9000 15 000 2007 22 VV DDU 3 570 15.1 15 000 9000 15 000 2007 22 VV DDU 3 570 15.1 15 000 9000 15 000 2007 22 VV DDU 3 571 15.2 13 000 9000 16 000 6302 22 VV DDU 3 707 15.4 15 000 9000 18 000 6306 22 VV DDU 3 500 7500 16 006 600 22 VV DDU 1530 13.8 10 000 7500 16 000 6302 22 VV DDU <td< td=""><td>N NR 1.3 0.95 40.7 0.25 0.3 44.8 0.885 N NR 1.7 0.95 40.7 0.25 0.3 44.8 0.885 N NR 2.46 1.35 44.6 0.4 0.5 57.9 1.12 N NR 2.46 1.35 49.73 0.4 0.5 57.9 1.12 N NR 2.46 1.35 55.6 0.4 0.5 57.9 1.12 N NR 2.46 1.35 55.6 0.4 0.5 57.9 1.12 N NR 2.46 1.35 55.6 0.4 0.5 67.7 1.7 N NR 3.28 1.9 59.61 0.6 0.5 67.6 1.7 N NR 3.28 1.9 59.61 0.6 0.5 61.7 N NR 3.28 1.9 62.6 0.5 71.2</td><td>27 26 30 0.3 45.5 2.3 0.242 27 45 0.3 4.5.5 2.3 0.059 29 30 43 0.6 53.5 2.9 0.079 30 32 47 1 58.5 3.3 0.129 31.5 36 55.5 1 68.5 2.9 0.036 32 34 48 0.6 58.5 2.9 0.036 33 35.5 53 1 64.5 3.3 0.175 34.5 38 61.5 1 76 4.6 0.287 32 32 40 0.3 50.5 1.8 0.024 32 34 45 0.3 50.5 2.3 0.065 35 36.5 57 1 68.5 4.6 0.199 36.5 4.5 68.5 1 83 4.6 0.346 37 38.5<!--</td--></td></td<></td>	3 3 20 16.1 18 000 10 000 12 000 6905 22 VV DDU 3 570 15.1 15 000 9000 15 000 6905 22 VV DDU 3 570 15.1 15 000 9000 15 000 2007 22 VV DDU 3 570 15.1 15 000 9000 15 000 2007 22 VV DDU 3 570 15.1 15 000 9000 15 000 2007 22 VV DDU 3 571 15.2 13 000 9000 16 000 6302 22 VV DDU 3 707 15.4 15 000 9000 18 000 6306 22 VV DDU 3 500 7500 16 006 600 22 VV DDU 1530 13.8 10 000 7500 16 000 6302 22 VV DDU <td< td=""><td>N NR 1.3 0.95 40.7 0.25 0.3 44.8 0.885 N NR 1.7 0.95 40.7 0.25 0.3 44.8 0.885 N NR 2.46 1.35 44.6 0.4 0.5 57.9 1.12 N NR 2.46 1.35 49.73 0.4 0.5 57.9 1.12 N NR 2.46 1.35 55.6 0.4 0.5 57.9 1.12 N NR 2.46 1.35 55.6 0.4 0.5 57.9 1.12 N NR 2.46 1.35 55.6 0.4 0.5 67.7 1.7 N NR 3.28 1.9 59.61 0.6 0.5 67.6 1.7 N NR 3.28 1.9 59.61 0.6 0.5 61.7 N NR 3.28 1.9 62.6 0.5 71.2</td><td>27 26 30 0.3 45.5 2.3 0.242 27 45 0.3 4.5.5 2.3 0.059 29 30 43 0.6 53.5 2.9 0.079 30 32 47 1 58.5 3.3 0.129 31.5 36 55.5 1 68.5 2.9 0.036 32 34 48 0.6 58.5 2.9 0.036 33 35.5 53 1 64.5 3.3 0.175 34.5 38 61.5 1 76 4.6 0.287 32 32 40 0.3 50.5 1.8 0.024 32 34 45 0.3 50.5 2.3 0.065 35 36.5 57 1 68.5 4.6 0.199 36.5 4.5 68.5 1 83 4.6 0.346 37 38.5<!--</td--></td></td<>	N NR 1.3 0.95 40.7 0.25 0.3 44.8 0.885 N NR 1.7 0.95 40.7 0.25 0.3 44.8 0.885 N NR 2.46 1.35 44.6 0.4 0.5 57.9 1.12 N NR 2.46 1.35 49.73 0.4 0.5 57.9 1.12 N NR 2.46 1.35 55.6 0.4 0.5 57.9 1.12 N NR 2.46 1.35 55.6 0.4 0.5 57.9 1.12 N NR 2.46 1.35 55.6 0.4 0.5 67.7 1.7 N NR 3.28 1.9 59.61 0.6 0.5 67.6 1.7 N NR 3.28 1.9 59.61 0.6 0.5 61.7 N NR 3.28 1.9 62.6 0.5 71.2	27 26 30 0.3 45.5 2.3 0.242 27 45 0.3 4.5.5 2.3 0.059 29 30 43 0.6 53.5 2.9 0.079 30 32 47 1 58.5 3.3 0.129 31.5 36 55.5 1 68.5 2.9 0.036 32 34 48 0.6 58.5 2.9 0.036 33 35.5 53 1 64.5 3.3 0.175 34.5 38 61.5 1 76 4.6 0.287 32 32 40 0.3 50.5 1.8 0.024 32 34 45 0.3 50.5 2.3 0.065 35 36.5 57 1 68.5 4.6 0.199 36.5 4.5 68.5 1 83 4.6 0.346 37 38.5 </td										
B 10			B 11										

4 - Boundary Dimensions for Rolling Bearings

Summary

Basic Order of Selection: $ID \rightarrow OD \rightarrow Width$

✓ Dimension series

- Indicated using two-digit figure
- 1st digit represents : Width series
- 2nd digit represents : Diameter series

✓ Bore Number represents Bore Diameter

- For bore number 04 to 96, Bore diameter = Bore number x 5

5. Tolerances, Clearances and Fits

• 1 micron (μ m) = 0.001 mm

Tolerances – Bearing Precision Class

- Bearing Precision Class also known as "Tolerance" or "Accuracy" class.
- Accuracy of Rolling Bearing Consists of Two Parts:

Low Accuracy

	ABMA	ISO	NSK (ISO)
lcy	ABEC 1	NORMAL	P0
accura	ABEC 3	CLASS 6	P6
asing	ABEC 5	CLASS 5	P5
Incre	ABEC 7	CLASS 4	P4
	ABEC 9	CLASS 2	P2

High Accuracy

• Example: OD Tolerance of a 6006 Single Row Deep Groove Ball Bearing

Tolerances – Bore and Shaft

- Bore and shaft tolerances are represented by:
 - a) Upper case *housing ID* : F, G, H, J, JS, K, M, N, P
 - b) Lower case *shaft OD* : *f*, *g*, *h*, *j*, *js*, *k*, *m*, *n*, *p*, *r*
 - c) Interference increases when alphabet increases: "m"has greater press fit than "j"
- Number represents amount of tolerance:
 - a) Tolerance range increases when number increases: 5, 6, 7, 8, 9, 10

Diame Classificatio	ter on (mm)	j6	j7	k5	k6	k7	m5
over	incl						
18	30	+9	+13	+11	+15	+23	+17
		-4	-8	+2	+2	+2	+8
30	50	+11	+15	+13	+18	+27	+20
		-5	-10	+2	+2	+2	+9

Refer to Page C18 ~ C19

Appendix Table 9 Tolerances for Shaft Diameters

																												U	nits : µn
Diar Diarsifica	neter tion (mm)	Single Plane Mean B.D.																										Diam Classificati	ater
over	incl	-Deviation (Normal) ⊿dmp	d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6	j5	j6	j7	k5	k6	k7	m5	m6	n6	p6	r6	r7	OVer	incl
3	6	- 8	- 30 - 38	- 20 - 28	- 10 - 18	- 4 - 9	- 4 - 12	0 - 5	0 - 8	0 - 12	0 - 18	0 - 30	0 - 48	± 2.5	± 4	- 3 - 2	- 6 - 2	- 8 - 4	+ 6 + 1	+ 9 + 1	+ 13 + 1	+ 9 + 4	+ 12 + 4	+ 16 + 8	+ 20 + 12	+ 23 + 15	+ 27 + 15	3	6
6	10	- 8	- 40 - 49	- 25 - 34	- 13 - 22	- 5 - 11	- 5 - 14	0 - 6	- 9	0	0 - 22	0 - 36	0 - 58	± 3	± 4.5	+ 4	+ 7	+ 10	+ 7 + 1	+ 10 + 1	+ 16 + 1	+ 12 + 6	+ 15 + 6	+ 19 + 10	+ 24 + 15	+ 28 + 19	+ 34 + 19	6	10
10	18	- 8	- 50 - 61	- 32 - 43	- 16 - 27	- 6 - 14	- 6 - 17	- 0 - 8	0 - 11	0 - 18	0 - 27	- 43	- 70	± 4	± 5.5	+ 5 - 3	+ 8 - 3	+ 12	+ 9 + 1	+ 12 + 1	+ 19 + 1	+ 15 + 7	+ 18 + 7	+ 23 + 12	+ 29 + 18	+ 34 + 23	+ 41 + 23	10	18
18	30	0 - 10	- 65 - 78	- 40 - 53	- 20 - 33	- 7 - 16	- 7 - 20	_ 0 _ 9	0 13	0	0 - 33	0 - 52	0 - 84	± 4.5	± 6.5	+ 5 - 4	+ 9 - 4	+ 13 - 8	+ 11 + 2	+ 15 + 2	+ 23 + 2	+ 17 + 8	+ 21 + 8	+ 28 + 15	+ 35 + 22	+ 41 + 28	+ 49 + 28	18	30
30	50	- 12	- 80 - 96	- 50 - 66	- 25 - 41	- 9 - 20	- 9 - 25	0 - 11	0 - 16	0 - 25	0 - 39	- 62	0 100	± 5.5	± 8	+ 6 - 5	+ 11 - 5	+ 15 	+ 13 + 2	+ 18 + 2	+ 27 + 2	+20 +9	+ 25 + 9	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59 + 34	30	50
50	80	0	- 100	- 60	- 30	- 10	- 10	0	0	0	0	0	0	+ 65	+ 95	+ 6	+ 12	+ 18	+ 15	+ 21	+ 32	+ 24	+ 30	+ 39	+ 51	+ 60 + 41	+ 71 + 41	50	65
50	00	- 15	- 119	- 79	- 49	- 23	- 29	- 13	- 19	- 30	- 46	- 74	- 120	1 0.5	1 0.0	- 7	- 7	-12	+ 2	+ 2	+ 2	+ 11	+ 11	+ 20	+ 32	+ 62 + 43	+ 73 + 43	65	80
80	120	0	- 120	- 72	- 36	- 12	- 12	0	0	0	0	0	0	± 7.5	±11	+ 6	+ 13	+ 20	+ 18	+ 25	+ 38	+ 28	+ 35	+ 45	+ 59	+ 73 + 51	+ 86 + 51	80	100
		- 20	- 142	- 94	- 58	- 21	- 34	- 15	-22	- 35	- 54	- 87	- 140			- 9	- 9	-15	+ 3	+ 3	+ 3	+ 13	+ 13	+ 23	+ 37	+ 54	+ 89 + 54	100	120
		0	- 145	- 85	- 43	- 14	- 14	0	0	0	0	0	0			+ 7	+ 14	+ 22	+ 21	+ 28	+ 43	+ 33	+ 40	+ 52	+ 68	+ 63	+ 103 + 63 + 105	120	140
120	180	- 25	- 170	- 110	- 68	- 32	- 39	— 18́	-25	— 4ŏ	- 63	- 100	— 16Ŏ	± 9	±12.5	-11	-11	-18	+ 3	+ 3	+ 3	+ 15	+ 15	+ 27	+ 43	+ 65 + 93	+ 65 + 108	140	160
																										+ 68 + 106	+ 68 + 123	180	200
180	250	0	- 170	- 100	- 50	- 15	- 15	0	0	0	0	0	0	± 10	±14.5	+ 7	+ 16	+ 25	+ 24	+ 33	+ 50	+ 37	+ 46	+ 60	+ 79	+ 77	+ 77 + 126	200	225
		- 30	- 135	- 125	- 75	- 35	- 44	-20	-25	- 40	- 12	- 115	- 105			- 13	-13	-21	T 4	T 4	T 4	Ŧ 17	Ŧ 17	7 51	+ 50	+ 113 + 84	+ 130 + 84	225	250
250	215	0	- 190	- 110	- 56	- 17	- 17	0	0	0	0	0	0	+ 11 5	+16	+ 7	+ 16	+ 26	+ 27	+ 36	+ 56	+ 43	+ 52	+ 66	+ 88	+ 126 + 94	+ 146 + 94	250	280
200	315	- 35	-222	- 142	- 88	- 40	- 49	-23	-32	- 52	- 81	- 130	-210	11.5	ŦIO	- 16	± 10	± 20	+ 4	+ 4	+ 4	+ 20	+ 20	+ 34	+ 56	+ 130 + 98	+ 150 + 98	280	315
315	400	0	-210	- 125	- 62	- 18	- 18	0	0	0	0	0	0	± 12.5	±18	+ 7	± 18	+ 29	+ 29	+ 40	+ 61	+ 46	+ 57	+ 73	+ 98	+ 144 + 108	+ 165 + 108	315	355
		- 40	- 240	- 161	- 98	- 43	- 54	-25	-30	- 57	- 89	- 140	- 230			- 18		-28	+ 4	+ 4	+ 4	+ 21	+ 21	+ 3/	+ 62	+ 150	+ 1/1 + 114	355	400
400	500	0 - 45	-230	- 135 - 175	- 68 - 108	- 20 - 47	- 20 - 60	0 -27	0 40	0 - 63	0 - 97	0 155	0 250	± 13.5	± 20	+ 7	± 20	+ 31 - 32	+ 32 + 5	+ 45 + 5	+ 68 + 5	+ 50 + 23	+ 63 + 23	+ 80	+ 108	+ 126	+ 126	400	450
																										+ 132 + 194	+ 132 + 220	450	500
500	630	0 - 50	-260 -304	- 145 - 189	- 76 - 120	-	- 22 - 66	-	0 -44	0 - 70	0 	0 - 175 -	0 - 280	-	± 22	-	-	_	-	+ 44 0	+ 70 0	-	+ 70 + 26	+ 88 + 44	+ 122 + 78	+ 150	+ 150	560	630
		0	200	100					0		0	0	0							. 50				. 100	. 100	+ 225	+ 155	630	710
630	800	- 75	- 340	-210	- 130	-	- 24 - 74	-	-50	- 80	- 125	-200	- 320	-	± 25	-	-	_	-	+ 50	+ 80	-	+ 30	+ 100	+ 138 + 88	+ 175 + 235 + 185	+ 175 + 265 + 185	710	800
000	1 000	0	- 320	- 170	- 86		- 26		0	0	0	0	0		. 20					+ 56	+ 90		+ 90	+ 1 12	+ 156	+ 266 + 210	+ 300 + 210	800	900
800	1000	- 100	-376	-226	- 142	_	- 82	_	-56	- 90	- 140	-230	- 360	_	± 28	_	_	_	_	0	0		+ 34	+ 56	+ 100	+ 276 + 220	+ 310 + 220	900	1 000
1 000	1 250	0	- 350	- 195	- 98	_	- 28	_	0	0	0	0	0	_	± 33	_	_	_	_	+ 66	+ 105	_	+ 106	+ 132	+ 186	+ 316 + 250	+ 355 + 250	1 000	1 1 2 0
		- 125	-416	-261	- 164		- 94		- 66	- 105	- 165	- 260	- 420							0	0		+ 40	+ 66	+ 120	+ 326 + 260	+ 365 + 260	1 120	1 250
1 250	1 600	0	- 390	-220	- 110	-	- 30 - 108	_	0	0 125	0 195	0	0	_	± 39	_	_	_	_	+ 78 0	+ 125	_	+ 126 + 48	+ 156	+ 218	+ 378 + 300 + 408	+ 425 + 300 + 455	1 250	1 400
				200			.50		.0	.20		0.0	000							5					1 140	+ 330	+ 330	1 400	1 600
600	2 000	0 - 200	-430 -522	-240 -332	- 120 - 212	-	- 32 - 124	-	0 - 92	0 150	0 230	0 - 370	0 - 600 -	-	± 46	-	_	_	-	+ 92 0	+ 150 0	_	+ 150 + 58	+ 184 + 92	+ 262 + 170	+ 370 + 492	+ 370	1 800	2 000
								1						1												+ 400	+ 400	1000	2 000

Refer to Page C20 ~ C21

Appendix Table 10 Tolerances for Housing Bore Diameters

																nits : µm											
Diar Classifica over	neter tion (mm) incl	Single Plane Mean B.D. Deviation (Normal) ⊿Dmp	E6	F6	F7	G6	G7	H6	H7	H8	J6	J7	JS6	JS7	K5	K6	K7	M5	M6	M7	N5	N6	N7	P6	P7	Diam Classificat Over	eter ion (mm) incl
10	18	- 8	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11 0	+ 18 0	+ 27 0	+ 6 - 5	+ 10 - 8	± 5.5	± 9	+ 2 - 6	+ 2 - 9	+ 6 - 12	- 4 -12	- 4 - 15	0 - 18	— 9 —17	- 9 - 20	- 5 - 23	- 15 - 26	- 11 - 29	10	18
18	30	- 9	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13 0	+ 21 0	+ 33 0	+ 8 - 5	+ 12 - 9	± 6.5	±10.5	+ 1 - 8	+ 2 - 11	+ 6 - 15	- 5 -14	- 4 - 17	0 - 21	- 12 - 21	- 11 - 24	- 7 - 28	- 18 - 31	- 14 - 35	18	30
30	50	0 - 11	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16 0	+ 25 0	+ 39 0	+ 10 - 6	+ 14 11	± 8	±12.5	+ 2 - 9	+ 3 - 13	+ 7 - 18	- 5 -16	- 4 - 20	0 - 25	- 13 - 24	- 12 - 28	- 8 - 33	- 21 - 37	- 17 - 42	30	50
50	80	0 - 13	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19 0	+ 30 0	+ 46 0	+ 13 — 6	+ 18 12	± 9.5	±15	+ 3 -10	+ 4 - 15	+ 9 - 21	- 6 -19	- 5 - 24	0 - 30	- 15 - 28	- 14 - 33	- 9 - 39	- 26 - 45	- 21 - 51	50	80
80	120	0 - 15	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22 0	+ 35 0	+ 54 0	+ 16 - 6	+ 22 13	±11	±17.5	+ 2 -13	+ 4 - 18	+ 10 - 25	- 8 -23	- 6 - 28	0 - 35	— 18 — 33	- 16 - 38	- 10 - 45	- 30 - 52	- 24 - 59	80	120
120 150	150 180	0 - 18 0 - 25	+ 110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25 0	+ 40 0	+ 63 0	+ 18 - 7	+ 26 -14	±12.5	± 20	+ 3 - 15	+ 4 - 21	+ 12 - 28	- 9 -27	- 8 - 33	0 - 40	-21 -39	- 20 - 45	- 12 - 52	- 36 - 61	- 28 - 68	120	180
180	250	0 - 30	+ 129 + 100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29 0	+ 46 0	+ 72 0	+ 22 - 7	+ 30 16	±14.5	± 23	+ 2 	+ 5 - 24	+ 13 - 33	-11 -31	- 8 - 37	0 - 46	-25 -45	- 22 - 51	- 14 - 60	- 41 - 70	- 33 - 79	180	250
250	315	0 - 35	+ 142 + 110	+ 88 + 56	+108 + 56	+ 49 + 17	+ 69 + 17	+ 32 0	+ 52 0	+ 81 0	+ 25 — 7	+ 36 16	±16	± 26	+ 3 -20	+ 5 - 27	+ 16 - 36	-13 -36	- 9 - 41	0 - 52	-27 -50	- 25 - 57	- 14 - 66	- 47 - 79	- 36 - 88	250	315
315	400	0 - 40	+ 161 + 125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36 0	+ 57 0	+ 89 0	+ 29 - 7	+ 39 18	±18	± 28.5	+ 3 -22	+ 7 - 29	+ 17 - 40	-14 -39	- 10 - 46	0 - 57	-30 -55	- 26 - 62	- 16 - 73	- 51 - 87	- 41 - 98	315	400
400	500	0 - 45	+ 175 + 135	+ 108 + 68	+ 131 + 68	+ 60 + 20	+ 83 + 20	+ 40 0	+ 63 0	+ 97 0	+ 33 — 7	+ 43 - 20	± 20	± 31.5	+ 2 -25	+ 8 - 32	+ 18 - 45	-16 -43	- 10 - 50	0 - 63	-33 -60	- 27 - 67	- 17 - 80	- 55 - 95	- 45 - 108	400	500
500	630	0 - 50	+ 189 + 145	+ 120 + 76	+ 146 + 76	+ 66 + 22	+ 92 + 22	+ 44 0	+ 70 0	+ 110 0	-	-	± 22	± 35	-	0 - 44	0 - 70	-	- 26 - 70	- 26 - 96	_	- 44 - 88	- 44 -114	- 78 - 122	- 78 - 148	500	630
630	800	0 - 75	+ 210 + 160	+ 130 + 80	+160 + 80	+ 74 + 24	+ 104 + 24	+ 50 0	+ 80 0	+ 125 0	_	_	± 25	±40	_	0 - 50	0 - 80	_	- 30 - 80	- 30 -110	_	- 50 - 100	- 50 - 130	- 88 - 138	- 88 - 168	630	800
800	1 000	0 100	+ 226 + 170	+ 142 + 86	+ 176 + 86	+ 82 + 26	+116 + 26	+ 56 0	+ 90 0	+ 140 0	-	-	± 28	±45	_	0 - 56	0 - 90	_	- 34 - 90	- 34 -124	_	- 56 -112	— 56 —146	— 100 — 156	— 100 — 190	800	1 000
1 000	1 250	0 	+ 261 + 195	+ 164 + 98	+ 203 + 98	+ 94 + 28	+ 133 + 28	+ 66 0	+ 105 0	+ 165 0	_	_	± 33	± 52.5	_	0 - 66	0 105	_	- 40 - 106	- 40 -145	_	- 66 - 132	- 66 -171	- 120 - 186	- 120 - 225	1 000	1 250
1 250	1 600	0 	+ 298 + 220	+ 188 + 110	+ 235 + 110	+ 108 + 30	+ 155 + 30	+ 78 0	+ 125 0	+ 195 0	_	_	±39	± 62.5	_	0 - 78	0 125	_	- 48 - 126	- 48 -173	_	- 78 - 156	- 78 -203	- 140 - 218	- 140 - 265	1 250	1 600
1 600	2 000	0 200	+ 332 + 240	+ 212 + 120	+ 270 + 120	+ 124 + 32	+ 182 + 32	+ 92 0	+ 150 0	+ 230 0	_	_	±46	±75	_	0 - 92	0 150	_	- 58 - 150	- 58 -208	_	- 92 - 184	- 92 -242	- 170 - 262	- 170 - 320	1 600	2 000
2 000	2 500	0 250	+ 370 + 260	+ 240 + 130	+ 305 + 130	+ 144 + 34	+ 209 + 34	+ 110 0	+ 175 0	+ 280 0	_	_	± 55	± 87.5	_	0 110	0 175	_	- 68 - 178	- 68 -243	_	-110 -220	- 110 - 285	- 195 - 305	- 195 - 370	2 000	2 500
															-												_

NSK

6006 Bearing with Precision Class, "Normal" ⁰ -10 μm

Shaft with tolerance, k5 $^{+11 \ \mu m}_{+2 \ \mu m}$

- Bearings are designed with a specific internal clearance between the raceways and the rolling elements.
- Internal clearance provides:
 - a) Free rotation of rolling elements
 - b) Compensation for thermal expansion
 - c) Optimum load distribution
- Correct clearance is important to hold the rotating parts of a machine in proper position across the whole range of conditions.

NSK

- CN Clearance is adequate for standard operating conditions.
- Clearance becomes progressively larger from C1 to C5.
 - a) In ball bearings, as radial clearance increases, axial clearance increases too.
 - b) The higher the clearance, the more the elements can shift in relation to each other.
 - c) Higher clearance = more tolerance of thermal effects.
 - d) Lower clearance = restriction of noise and vibration required.

Refer to Page A14 ~ A15

NSK

- Many equipment breakdowns because of improper sizing between bores and shafts.
- Generally, a tight fit is required on the ring sustaining the rotating load.

6006 Bearing with CN Clearance

6006 Bearing with CN Clearance

6006 Bearing with CN Clearance

NSK International (Singapore) Pte Ltd

Importance of Proper Fits

- Slight Interference/Loose Fit Creep occurs (relative movement)
 - Damages fitted surfaces becomes abraded
 - a) cause wear (increasing clearance),
 - b) considerable damage to shaft,
 - c) abnormal heating,
 - d) vibration (particles enters interior),
 - e) contamination from accumulated wear particles.

Excessive Interference – High stress buildup

Damages –

- a) fracture inner rings,
- b) decrease service life,
- c) excess heat buildup,
- d) premature bearing failure,
- e) decrease internal clearance (growth of inner ring or shrinkage in outer ring).

6 – Tolerances, Fits and Clearances

Summary

- ✓ Bore and shaft tolerances represented:
 a) Upper case *housing diameter (ID): F, G, H, J, JS, K, M, N, P*b) Lower case *shaft diameter (OD): f, g, h, j, js, k, m, n, p, r*
- Precision class (accuracy) of rolling bearing consists of:
 a) Dimensional Tolerance
 b) Running Accuracy
- ✓ Internal clearance provides
 - a) Free rotation of rolling elements
 - b) Compensation for thermal expansion
 - c) Optimum load distribution
- \checkmark Type of fits achieved by specifying the tolerance range for the parts.

6. Bearing Numbers for Rolling Bearings

Consists of alphanumeric combinations that indicate:

bearing type, boundary dimensions, internal clearance, dimensional and running accuracies, and other related specifications.

- Bearing series symbols
 - ➤ 1st figure or symbol bearing type
 - ➢ 2nd & 3rd figure dimension series

Basic Number	Bearing series symbol					
	Bore number					
	Contact angle symbol					
Supplementary	Internal design symbol					
Symbol	Material symbol					
	Cage symbol					
	Seals, shields symbol					
	Symbol for design of rings					
	Arrangement symbol					
	Internal clearance symbol					
	Tolerance class symbol					
	Special specification symbol					
	Spacer or sleeve symbol					
	Grease symbol					
	Bearing series symbol					

Refer to Page A54 ~A55

NSK

	Bearing Series S Symbols		Dimension Symbols					Dimension Symbols	
Bearing Type		Type Symbols	Width Symbols	Diameter Symbols	Bearing Type	Bearing Series Symbols	Type Symbols	Width Symbols or Height Symbols	Diameter Symbols
	68	6	(1)	8	Double-Row	NNU49	NNU	4	9
Single-Row	69	- 6	(1)	9	Cylindrical	NN30	NN	3	0
Deep Groove	60	6	(1)	0	Roller Bearings	Point for Composition	202000	DIGEN.	
Ball Bearings	62	6	(0)	2		NIAAR	NIA	4	0
	63	6	(0)	3	Needle Roller Bearings	NA48	NA	4	0
	70	~	123			NIAEO	NA	6	3
Single-Row	79	7	(1)	9		NASS	NA	5	9
Angular Contact	70	7		0		INAUS	144	.0	3
Ball Bearings	72	-	(0)	2		1222	1.2	-	
	13	×.	(0)	3		329	3	2	9
	12	-1	(0)	2		320	3	2	0
Self-Aligning	13	1	(0)	3		330	3	3	0
Ball Bearings	22	(1)	2	2	T	331	3	3	1
	23	(1)	2	3	Tapered Roller	302	З	0	2
	NU10	NU	1	0	Spherical Roller Bearings	322	3	2	2
	NU2	NU	(0)	2		332	З	3	2
	NU22	NU	2	2		202	-		-
	NULO	511.1	(0)	2		303	3	0	3
	NUISS	NU	(0)	3		323	3	2	3
	NUA	NU	(0)	3		230	2	3	0
2		140	(0)			221	2	3	1
	NJ2	NJ	(0)	2		231	2	3	
	NJ22	NJ	2	2		LLL	2	2	2
	NJ3	NJ	(0)	3		232	2	з	2
	NJ23	NJ	2	З		213 (1)	2	0	з
Single-Row	NJ4	NJ	(0)	4		223	2	2	3
Cylindrical	NUP2	NUP	(0)	2					
Roller	NUP22	NUP	2	2		511	5	1	1
Bearings	NUP3	NUP	(0)	з		512	5	1	2
	MI IP23	NUIP	2	3	Thrust Ball Bearings with Flat Seats	513	5	1	з
	NUP4	NUP	(0)	4		514	5	1	4
	N10	N	1	0		522	5	2	2
	N2	N	(0)	2		523	5	2	з
	N3	N	(0)	3		524	5	2	4
	N4	N	(0)	4					
	NF2	NE	(0)	2	Spherical	292	2	9	2
	NF3	NF	(0)	3	Thrust Roller	293	2	9	3
	NF4	NE	(0)	4	Bearings	294	2	9	4

BOUNDARY DIMENSIONS AND IDENTIFYING NUMBERS FOR BEARINGS

Bearing Series Symbols (1)	Bor	e Number	Cor	ntact Angle Symbol	Interr	nal Design Symbol	Ma	terial Symbol	Cag	e Symbol	External Features Seals, Shields Symbol		Sym Symbo	ol
ymbol Meaning	Symbol	Meaning	Symbol	Meaning	Symbol	Meaning	Symbo	l Meaning	Symbol	Meaning	Symbol	Meaning	Symbol	Ĺ
68 Single-Row 69 Groove Ball 60 Bearings 70 Single-Row 72 Single-Row 73 Bearings 13 Aligning Ball 8earings 13 Aligning Ball 13 Aligning Ball 13 Bearings 13 Bearings 14 Searings 14 Searings 15 Searings 16 Searings 17 Searings 18 Searing	1 2 3 9 000 011 02 03 7 22 7 28 7 28 7 22 7 28 7 32 04(') 05 06 88 8 92 96 7500 /530 7500 /550 7500 /5000 /50	Banina Immi 2 3 9 10 12 15 17 22 28 32 20 25 30 440 460 460 460 460 500 550 550 2 360 2 500	A A5 B C Omitted D	(Angular) (Angular) (Angular) (Contact Angle of 30° Standard Contact Angle of 25° Standard Contact Angle of 40° Standard Contact Angle Of 15° Standard Contact Angle Contact Angle Contact Angle Contact Angle Contact Angle Contact Angle Less than 17° Contact Angle about 28°	A J J C CA CD EA E HR(')	Internal Design Differs from Standard One Smaller Diameter of Outer Ring Raceway, Contact Raceway, Contact R	g h	Case-Hardened Stael Used in Bings. Rolling Elements Stainless Steel Used in Rings. Rolling Elements	M W T	Machined Brass Cage Pressed Steel Cage Synthetic Resin Cage Without Cage	Z ZZ ZZS DU DU VV VV	 Shildt Sn One Sn One Sn One Sn One Sn One Shildt On Both Sides 	K K30 E E4 N NR	
							-		-		-			

(7) For Bearing Bore Numbers 04 through 96, five times the bore number gives the bore size (mm) (except doubledirection thrust ball bearings).

Table 7. 6 Formulation of

Bearing Numbers kiliary Symbols bol Special Specification Symbol Tolerance Class Symbol Spacer or Sleeve Arrangement Internal Clearance Symbol Grease Symbol Symbol ol for Design f Rings Symbol Meaning Symbol Meaning Symbol Meaning (radial clearance) Symbol Meaning Symbol Meaning Symbol Meaning Symbol Meaning Clearance Less than Bearings with Outer Ring Spacers AV2 Shell Alvania Grease No. 2 mitted ISO Normal Bearings treated for Dimensional Stabilization Tapered Bore of Inner Ring (Taper 1:12) DB CI +K Back-to-Clearance Less than Arrangeme CZ D4M Toray Silicone SH 44M P6 ISO Class 6 Omitter **CN** Clearance +L Bearings with Inner Ring Spacers DF Face-to-Clearance Greater than CN C3 X26 Working Temperature Lower than 150°C Tapered Bore of Inner Ring (Taper 1:30) Clearance Greater than C3 P6X ISO Class 6X NS7 NS Hi-lube C4 Clearance Greater than C4 DT Tandem Arrangeme C5 +KL Bearings with Both X28 Working Temperature Lower than 200°C P5 ISO Class 5 PS2 Multemp PS 2 Inner and Outer Ring Spacers Clearance Less than CC2 CC1 Clearance Less than Notch or Lubricating Groove in Ring CC2 P4 ISO Class 4 X29 Working Temperature Lower than 250°C Adapter Designation Н CC Normal Clearance Clearance Greater CC3 P2 ISO Class 2 AH Withdrawal Sleeve Designation CC4 ABMA(") Lubricating Groove in Outside Surface and Holes in Outer Ring CC5 Clearance Greater Tapered roller bearing (Spherical Roller Bearings) HJ Thrust Collar Designation Clearance Less than MC2 MC1 mitted Class 4 Clearance Less than S11 Working Temperature Lower than 200°C MC2 Snap Ring Groove in Outer Ring MC3 Normal Clearance PN2 Class 2 Clearance Greater MC4 PN3 Class 3 Snap Ring Groove with Snap Ring in Outer Ring PN0 Class 0 Clearance in Deep Groove Ball Bearings for Electric Motors PNO0 Class 00 CT Clearance in Cylindrical Roller Bearings for CM Electric Motors rtially the ame as JIS(°) NSK Symbol Partially the same as JIS(*)/ BAS(*) Same as JIS(*) Same as JIS(*) NSK Symbol, Partially the same as JIS(*) In Principle, Marked on Bearings Not Marked on Bearings otes (5) JIS : Japanese Industrial Standards. BAS : The Japan Bearing Industrial Association Standard.) ABMA : The American Bearing Manufacturers Association.

NSK International (Singapore) Pte Ltd

A 56

(4) HR is prefix to bearing series symbols.

NSK

Refer to Page A56 ~ A57

NSK

A 57

NSK

NSK

Marking on Bearings

Ball Bearing Nomenclature (10 mm bore or greater)

- 62 Basic Type and Series Deep Groove Ball Bearing
- 02 Bore Size (15 mm)
- T1X Polyamide (Nylon) Cage
- VV Double Non-Contact Seal
- C3E Loose Clearance Low Noise Level
- SRI Grease Chevron SRI-2
- S Grease Fill Standard 35%

Angular Contact Nomenclature

- 72 Basic Type and Series
 05 Bore Size in mm (Multiply by 5)
 A Contact Angle 30 degrees
 TY Nylon Cage
 DB Duplex Set Back to Back
 C7 Light Preload
- P4 ISO Precision 4 = ABEC 7

Example : Deep Groove Ball Bearing

Example : Angular Contact Ball Bearing

Cylindrical Bearing Nomenclature (10 mm bore or greater)

NU	Basic Type - Cylindrical Roller NU
213	Dimension Series (2) and ID (65 mm)
Μ	Brass Cage
C3E	Loose Clearance – Low Noise Level
SRI	Grease – Chevron SRI
S	Grease Fill – Standard 35%

NSK International (Singapore) Pte Ltd

Spherical Bearing Nomenclature

- 22 Basic Type/Width Series Spherical Roller
- Dimension Series (2) and ID (65 mm)
- CAM Inner Ring Design/Brass Cage
- E4 Lube Groove and Holes
- C3 Radial Internal Clearance Loose
- S11 Temperature Stabilized to 200 deg C

What is the bearing type and bore for following bearings?

Bearing Number	Bearing Type	<u>Bore</u>
6000	Single Row Deep Groove Ball Bearing	10 mm
7202	Angular Contact Ball Bearing	15 mm
22228	Spherical Roller Bearing	140 mm
696	SRDG Miniature Ball Bearing	6 mm
NUP22/28	Cylindrical Roller Bearing	28 mm

Identify the type of bearing which would best perform under the following conditions:

- Q # 1: High speed application requiring low torque, with ability to take both radial and axial loads.
 Deep Groove Ball Bearings
- Q # 2: Heavy or impact radial loads, medium axial loads, and moderate angular misalignment.
 Spherical Roller Bearings
- Q # 3: Machine tool spindles requiring high speed, high load and high accuracy.
 Angular Contact Ball Bearings
- Q # 4: Small radial load and high angular misalignment.
 Self-Aligning Ball Bearings

Refer to Rolling Bearing catalog for answers

- Q # 5: What is the OD, Width, and Bore for following bearings
 - 6308 (SRDG)
 OD 90mm, Width 23mm, Bore 40mm
 - 6005 (SRDG) OD 47mm, Width 12mm, Bore 25mm
 - ➤ 7221 (ACCB) OD 190mm, Width 36mm, Bore 105mm
 - 23064 (Spherical) OD 480mm, Width 121mm, Bore 320mm
- Q # 6: Recommend a suitable bearing type and number for following application:-
 - Electric motor with axial load in both direction and moderate radial, and high rpm
 - OD=72mm, Width=17mm, Bore=35mm
 SRDG 6207

Refer to Rolling Bearing catalog for answers

7. Bearing Handling

Rolling bearings are high precision machine parts.

- They must be handled accordingly.
- Even if high quality bearings are used, their expected performance cannot be achieved if they are not handled properly.

The following main precautions to be observed:

(1) Store in Clean, Dry Area

(Prevent the entry of dust and dirt)

(2) Careful Handling

(Avoid excessive strong impacts)

(3) Use Proper Tools

(Avoid general purpose tools)

(4) Prevent Corrosion

(Wear gloves to prevent adherence of perspiration on hand to bearings. Pay attention to corrosive gases.)

Proper Storage Condition

- Clean
- Non-Humid
- Place which is not exposed to direct sunshine

NSK

• Air flow between the box and floor

Do Not Drop Bearing

 Work In Clean Condition To Reduce Contamination

Debris, metal powder, foreign particle, etc

Use Proper Tools

Ensure Proper Alignment

Bearing Basic – Lessons Learnt

- Understood the difference between plain and rolling bearings.
- Introduced to the different types of rolling bearings.
- Learnt the importance and relationship between tolerances, clearances and fits.
- Able to identify bearings based on its part numbers.
- Knowledge of how to handle bearings.

End of Presentation

THANK YOU!

NSK International (Singapore) Pte Ltd